Numpy

Numpy

Applications in numpy

  1. reshape numpy array
    .reshape()
  2. generate array from a fixed range
    1
    2
    3
    4
    5
    np.linspace(0, 1, 100) # generate 100 values from [0, 1], each two with same gap

    np.logspace(0, 1, 100) # generate 100 values from [10^0, 10^1], each two with same gap

    np.random.uniform(0, 1, 100) # randomly sampling 100 values from [0, 1)
  3. generate random values array
    1
    np.random.randn(n, m) # array with (n x m) random values

Comments